
Struts 2 : Interceptors

Interceptors

 Interceptors play a crucial role

 A high level of separation of concerns.

 Interceptors remove cross-cutting tasks from our action components

such a high level of separation of concerns.

 Cross-cutting, or preprocessing and postprocessing.

 Example

 Logging (this task must be done for almost every request)

 File uploading and transferring request parameters onto our action

Interceptors

 Role of interceptors are clear,

 instead of having a simple controller invoking an action directly,

 we now have a component that sits between the controller and the

action.

 The invocation of an action is a layered process

 that always includes the execution of a stack of interceptors prior to

and after the actual execution of the action itself.

 Rather than invoke the action’s execute() method directly,

 the framework creates an object called an ActionInvocation that

encapsulates the action and all of the interceptors that have been

configured to fire before and after that action executes.

Interceptors

The invocation of an action must first travel through the stack of

interceptors associated with that action.

Interceptors

 The ActionInvocation encapsulates all the processing details

associated with the execution of a particular action.

 When the framework receives a request, it first must decide to which

action the URL maps.

 An instance of this action is added to a newly created instance of

ActionInvocation.

 Next, the framework consults the declarative architecture, as created

by the application’s XML or Java annotations, to discover which

interceptors should fire, and in what sequence.

 References to these interceptors are added to the ActionInvocation.

 In addition to these central elements, the ActionInvocation also holds

references to other important information like the servlet request objects

and a map of the results available to the action.

How the interceptors fire

 Now that the ActionInvocation has been created and populated with

all the objects and information it needs, we can start the invocation.

 The ActionInvocation exposes the invoke() method, which is called

by the framework to start the execution of the action.

 When the framework calls this method, the ActionInvocation starts

the invocation process by executing the first interceptor in the stack.

 Note that the invoke() method doesn’t always map to the first

interceptor; it’s the responsibility of the ActionInvocation itself to

keep track of what stage the invocation process has reached and pass

control to the appropriate interceptor in the stack. It does this by

calling that interceptor’s intercept() method.

How the interceptors fire

How the interceptors fire

 Continued execution of the subsequent interceptors,

and ultimately the action, occurs through recursive

calls to the ActionInvocation’s invoke() method.

 Each time invoke() is called, ActionInvocation

consults its state and executes whichever interceptor

comes next.

 When all of the interceptors have been invoked, the

invoke() method will cause the action itself to be

executed

How the interceptors fire

 Now let’s look at what an interceptor can do when it

fires. An interceptor has a three-stage, conditional

execution cycle:

 Do some preprocessing.

 Pass control on to successive interceptors, and

ultimately the action, by calling invoke(), or divert

execution by itself returning a control string.

 Do some postprocessing.

How the interceptors fire

Built-in Struts 2 interceptors

 Struts 2 comes with a powerful set of built-in

interceptors that provide most of the functionality

you’ll ever want from a web framework.

 Based on functionalities the interceptors have been

grouped as below,

 Utility interceptors

 Data transfer interceptors

 Workflow interceptors

 Miscellaneous interceptors

11

Utility interceptors

 These interceptors provide simple utilities to aid in

development, tuning, and troubleshooting.

 TIMER

 This simple interceptor merely records the duration of an

execution. Position in the interceptor stack determines what this is

actually timing.

INFO: Executed action [/chapterFour/secure/ImageUpload!execute] took 123 ms.

 LOGGER

 This interceptor provides a simple logging mechanism that logs an

entry statement during preprocessing and an exit statement during

postprocessing.

INFO: Starting execution stack for action /chapterFour/secure/ImageUpload

INFO: Finishing execution stack for action /chapterFour/secure/ImageUpload

 This can be useful for debugging.

Data transfer interceptors

 Interceptors can be used to handle data transfer.

 PARAMS (DEFAULTSTACK)

 It transfers the request parameters to properties exposed by the ValueStack.

 STATIC-PARAMS (DEFAULTSTACK)

 This interceptor also moves parameters onto properties exposed on the

ValueStack. The difference is the origin of the parameters.

 The parameters that this interceptor moves are defined in the action

elements of the declarative architecture.

 For example, suppose you have an action defined like this in one of your

declarative architecture XML files:

<action name="exampleAction" class="example.ExampleAction">

<param name="firstName">John</param>

<param name="lastName">Doe</param>

</action>

Data transfer interceptors
 AUTOWIRING

 This interceptor provides an integration point for using Spring to

manage your application resources.

 SERVLET-CONFIG (DEFAULTSTACK)

 The servlet-config interceptor provides a clean way of injecting various

objects from the Servlet API into your actions.

 This interceptor works by setting the various objects on setter methods

exposed by interfaces that the action must implement.

 The following interfaces are available for retrieving various objects

related to the servlet environment.

Data transfer interceptors
 Your action can implement any number of these.

 ServletContextAware—Sets the ServletContext

 ServletRequestAware—Sets the HttpServletRequest

 ServletResponseAware—Sets the HttpServletResponse

 ParameterAware—Sets a map of the request parameters

 RequestAware—Sets a map of the request attributes

 SessionAware—Sets a map of the session attributes

 ApplicationAware—Sets a map of application scope properties

 FILEUPLOAD (DEFAULTSTACK)

 The fileUpload interceptor transforms the files and metadata from multipart

requests into regular request parameters so that they can be set on the action just

like normal parameters.

Workflow interceptors
 WORKFLOW (DEFAULTSTACK)

 It works with our actions to provide data validation and subsequent

workflow alteration if a validation error occurs.

 VALIDATION (DEFAULTSTACK)

 The validation interceptor, on the other hand, is part of the Struts 2

validation framework and provides a declarative means to validate your

data.

 Rather than writing validation code, the validation framework allows

you to use both XML files and Java annotations to describe the

validation rules for your data.

 PREPARE (DEFAULTSTACK)

 The prepare interceptor provides a generic entry point for arbitrary

workflow processing that you might want to add to your actions. The

concept is simple. When the prepare interceptor executes, it looks for a

prepare() method on your action.

Workflow interceptors
 MODELDRIVEN (DEFAULTSTACK)

 The modelDriven interceptor is considered a workflow interceptor

because it alters the workflow of the execution by invoking getModel(),

if present, and setting the model object on the top of the ValueStack

where it’ll receive the parameters from the request.

 This alters workflow because the transfer of the parameters, by the

params interceptor, would otherwise be directed onto the action object

itself.

 By placing the model over the action in the ValueStack, the

modelDriven interceptor thus alters workflow.

 This concept of creating an interceptor that can conditionally alter the

effective functionality of another interceptor without direct

programmatic intervention demonstrates the power of the layered

interceptor architecture.

Miscellaneous interceptors
 EXCEPTION (DEFAULTSTACK)

 This important interceptor lays the foundation for rich exception

handling in your applications.

 The exception interceptor comes first in the defaultStack, and should

probably come first in any custom stacks you create yourself.

 The exception interceptor will catch exceptions and map them, by type,

to user-defined error pages.

 Its position at the top of the stack guarantees that it’ll be able to catch all

exceptions that may be generated during all phases of action invocation.

 It can catch them because, as the top interceptor, it’ll be the last to fire

during postprocessing.

Miscellaneous interceptors

 TOKEN AND TOKEN-SESSION

 The token and token-session interceptors can be used as part of a system

to prevent duplicate form submissions.

 Duplicate form posts can occur when users click the Back button to go

back to a previously submitted form and then click the Submit button

again, or when they click Submit more than once while waiting for a

response.

 The token interceptors work by passing a token in with the request that

is checked by the interceptor.

 If the unique token comes to the interceptor a second time, the request is

considered a duplicate.

 These two interceptors both do the same thing, differing only in how

richly they handle the duplicate request.

 You can either show an error page or save the original result to be

rendered for the user.

Miscellaneous interceptors
 SCOPED-MODELDRIVEN (DEFAULTSTACK)

 This nice interceptor supports wizard-like persistence across requests

for your action’s model object.

 This one adds to the functionality of the modelDriven interceptor by

allowing you to store your model object in, for instance, session scope.

 EXECANDWAIT

 When a request takes a long time to execute, it’s nice to give the user

some feedback.

 While the token interceptors discussed earlier can technically solve this

problem, we should still do something for the user.

 The execAndWait interceptor helps prevent your users from getting

antsy.

Declaring interceptors

 Since most of the interceptors that you’ll typically need are

provided by the struts-default package, we need to see the

interceptor declarations made in the strutsdefault xml file.

 Basically, interceptor declarations consist of declaring the

interceptors that are available and associating them with the

actions for which they should fire.

 The only complication is the creation of stacks, which allow

you to reference groups of interceptors all at once.

 Interceptor declarations, like declarations of all framework

components, must be contained in a package element.

Declaring interceptors

Declaring interceptors

Declaring interceptors

 XML DOCUMENT STRUCTURE

 Before we see how we can specify the interceptors that’ll fire for your

specific actions, we should make a point about the sequence of elements

within the XML documents we use for declarative architecture.

 These XML documents must conform to certain rules of ordering.

 For instance, each package element contains precisely one interceptors

element, and that element must come in a specific position in the

document.

 The complete DTD, struts-2.0.dtd, can be found on the Struts 2 website.

 For now, note the following snippet from the DTD, which pertains to

the structure of listing 4.2

Declaring interceptors

Mapping interceptors to actions

 Much of the time, your actions will belong to packages that

extend struts-default, and you’ll be content to let them use the

defaultStack of interceptors they inherit from that package.

 Eventually, you’ll probably want to modify, change, or perhaps

just augment that default set of interceptors.

 To do this, you have to know how to map interceptors to your

actions.

 Associating an interceptor to an action is done with an

interceptorref element.

 The following code snippet shows how to associate a set of

interceptors with a specific action:

Mapping interceptors to actions

Building your own interceptor
 Implementing the Interceptor interface

 When you write an interceptor, you’ll implement the

com.opensymphony.xwork2.interceptor.Interceptor interface.

 Interface defines only three methods.

 The first two are typical lifecycle methods that give you a chance to

initialize and clean up resources as necessary.

 The real business occurs in the intercept() method. This method is

called by the recursive ActionInvocation.invoke() method.

Building your own interceptor
 Implementing the Interceptor interface

 If you want to write an interceptor that has this type of

parameterization, you can extend

com.opensymphony.xwork2.interceptor.MethodFilterInterc

eptor rather than directly implementing the Interceptor

interface.

Example : AuthenticationInterceptor
 The authentication interceptor will be simple.

 If you recall the three phases of interceptor processing

 Preprocessing

 Calling ActionInvocation.invoke()

 Postprocessing

 You can anticipate how our AuthenticationInterceptor will

function.

Example : AuthenticationInterceptor
 When a request comes to one of our secure actions, we’ll want

to check whether the request is coming from an authenticated

user.

 This check is made during preprocessing.

 If the user has been authenticated, the interceptor will call invoke(), thus

allowing the action invocation to proceed.

 If the user hasn’t been authenticated, the interceptor will return a control

string itself, thus barring further execution.

 The control string will route the user to the login page.

Example : AuthenticationInterceptor
 Struts 2 Portfolio application.

 On the home page, there’s a link to add an image without having logged

in.

 The add image action is a secure action.

 Try clicking the link without having logged in.

 You’ll be automatically taken to the login page.

 Now, log in and try the same link again.

 The application comes with a default user, username = “Ravi" and

password = “ravi".

 This time you’re allowed to access the secure add image action.

 This is done by a custom interceptor that we’ve placed in front of all of

our secure actions.

Example : AuthenticationInterceptor
 Roles of the AuthenticationInterceptor

 It doesn’t do the authentication.

 It just bars access to secure actions by unauthenticated users.

 Authentication itself is done by the login action.

 The login action checks to see whether the username and password are

valid.

 If they are, the user object is stored in a session-scoped map.

 When the AuthenticationInterceptor fires, it checks to see whether the

user object is present in the session.

 If it is, it lets the action fire as usual.

 If it isn’t, it diverts workflow by forwarding to the login page.

Example : AuthenticationInterceptor

Example : AuthenticationInterceptor

Example : AuthenticationInterceptor

Example : AuthenticationInterceptor
 interceptors element

 contain our interceptor and interceptor-stack declarations.

 interceptor element

 to map our Java class to a logical name.

 interceptor-stack

 we build a new stack that takes the defaultStack and adds our new

interceptor to the top of it.

 We put it on top because we might as well stop an unauthenticated

request as soon as possible.

 default-interceptor-ref

 we declare our new secure- Stack as the default stack for the package.

 Note that the default-interceptor-ref element isn’t contained in the interceptors element; it

doesn’t declare any interceptors, it just declares the default value for the package.

Example : AuthenticationInterceptor
 The interceptor starts inside the intercept() method

 Here we can see that the interceptor uses the ActionInvocation

object to obtain information pertaining to the request.

 We’re getting the session map. With the session map in hand,

we retrieve the user object stored under the known key.

 If the user object is null,

 then the user hasn’t been authenticated through the login action.

 At this point, we return a result string, without allowing the action to

continue. This result string, Action.LOGIN, points to our login page.

Example : AuthenticationInterceptor
 If the user object exists,

 then the user has already logged in.

 At this point, we get a reference to the current action from the

ActionInvocation and check whether it implements the UserAware

interface. This interface allows actions to have the user object

automatically injected into a setter method.

 With the business of authentication out of the way, the

interceptor calls invoke() on the ActionInvocation object to

pass control on to the rest of the interceptors and the action.

